Class/Object

io.radanalytics.silex.cluster

RandomForestClusterModel

Related Docs: object RandomForestClusterModel | package cluster

Permalink

class RandomForestClusterModel[T] extends Serializable

Represents a Random Forest clustering model of some data objects

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RandomForestClusterModel
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RandomForestClusterModel(extractor: (T) ⇒ Seq[Double], randomForestModel: RandomForestModel, kMedoidsModel: KMedoidsModel[Vector[Int]])

    Permalink

    extractor

    A feature extraction function defined on data objects

    randomForestModel

    RF model component

    kMedoidsModel

    K-medoids clustering model component

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. val extractor: (T) ⇒ Seq[Double]

    Permalink

    A feature extraction function defined on data objects

  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. val kMedoidsModel: KMedoidsModel[Vector[Int]]

    Permalink

    K-medoids clustering model component

  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. def predict(point: T): Int

    Permalink

    Return the index of nearest cluster to the input point

    Return the index of nearest cluster to the input point

    point

    A data object

    returns

    The index of the cluster closest to this point

  18. def predictBy[O, V](obj: O)(f: (O) ⇒ (T, V)): (Int, V)

    Permalink

    Extracts a data object and a tag value from another data structure, and returns the index of closest cluster, paired with the tag value

    Extracts a data object and a tag value from another data structure, and returns the index of closest cluster, paired with the tag value

    obj

    An object containing a data point and an associated tag value

    f

    Function to extract data point and the tag value from 'obj'

    returns

    A pair value (j, v) where (j) is index of closest cluster and (v) is the associated tag value

  19. def predictFromFv(fv: Seq[Double]): Int

    Permalink

    Return the index of nearest cluster to the feature vector associated with some input object

    Return the index of nearest cluster to the feature vector associated with some input object

    fv

    A feature vector associated with some input data object. Assumed to have been obtained from the model's feature extractor.

    returns

    The index of cluster closest to a corresponding data object

  20. def predictFromFvBy[O, V](obj: O)(f: (O) ⇒ (Seq[Double], V)): (Int, V)

    Permalink

    Extracts a feature vector and a tag value from another data structure, and returns the index of closest cluster, paired with the corresponding distance.

    Extracts a feature vector and a tag value from another data structure, and returns the index of closest cluster, paired with the corresponding distance.

    obj

    An object containing a feature vector and an associated tag value

    f

    Function to extract feature vector and tag value from 'obj'

    returns

    A pair (j, v) where (j) is index of closest cluster and (v) is the associated tag value

  21. def predictWithDistance(point: T): (Int, Double)

    Permalink

    Returns the index of closest cluster, paired with corresponding distance

    Returns the index of closest cluster, paired with corresponding distance

    point

    A data object

    returns

    Pair (j, d) with (j) the closest cluster index and (d) the corresponding distance

  22. def predictWithDistanceBy[O, V](obj: O)(f: (O) ⇒ (T, V)): (Int, Double, V)

    Permalink

    Extracts a data object and a tag value from another data structure, and returns the index of closest cluster, with the corresponding distance and associated tag value

    Extracts a data object and a tag value from another data structure, and returns the index of closest cluster, with the corresponding distance and associated tag value

    obj

    An object containing a data point and an associated tag value

    f

    Function to extract data point and tag value from 'obj'

    returns

    A tuple (j, d, v) where (j) is index of closest cluster, (d) is corresponding distance, and (v) is the associated tag value

  23. def predictWithDistanceFromFv(fv: Seq[Double]): (Int, Double)

    Permalink

    Returns the index of closest cluster for a data object associated with a given feature vector, paired with the corresponding distance.

    Returns the index of closest cluster for a data object associated with a given feature vector, paired with the corresponding distance.

    fv

    A feature vector associated with some input data object. Assumed to have been obtained from the model's feature extractor.

    returns

    The index of cluster closest to the associated data object, paired with the corresponding distance

  24. def predictWithDistanceFromFvBy[O, V](obj: O)(f: (O) ⇒ (Seq[Double], V)): (Int, Double, V)

    Permalink

    Extracts a feature vector and a tag value from another data structure, and returns the index of closest cluster, with the corresponding distance and associated tag value

    Extracts a feature vector and a tag value from another data structure, and returns the index of closest cluster, with the corresponding distance and associated tag value

    obj

    An object containing a data point and an associated tag value

    f

    Function to extract the feature vector and tag value from 'obj'

    returns

    A tuple (j, d, v) where (j) is index of closest cluster, (d) is corresponding distance, and (v) is the associated tag value

  25. val randomForestModel: RandomForestModel

    Permalink

    RF model component

  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  27. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped