# CramersV

### Related Doc: package statistics

#### object CramersV

"Cramers' V is a measure of association between two nominal variables, giving a value between 0 and +1 (inclusive)."

Linear Supertypes
AnyRef, Any
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. CramersV
2. AnyRef
3. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Value Members

1. #### final def !=(arg0: Any): Boolean

Definition Classes
AnyRef → Any
2. #### final def ##(): Int

Definition Classes
AnyRef → Any
3. #### final def ==(arg0: Any): Boolean

Definition Classes
AnyRef → Any
4. #### def apply[T, U](values: Seq[(T, U)]): Double

Calculate Cramer's V for a collection of values co-sampled from two variables.

Calculate Cramer's V for a collection of values co-sampled from two variables.

values

Sequence of 2-tuples containing co-sampled values

returns

Cramer's V

5. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
6. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
7. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
8. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
9. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
10. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
11. #### def hashCode(): Int

Definition Classes
AnyRef → Any
12. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
13. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
14. #### final def notify(): Unit

Definition Classes
AnyRef
15. #### final def notifyAll(): Unit

Definition Classes
AnyRef
16. #### def pValueEstimate[T, U](values: Seq[(T, U)], rounds: Int, seed: Long = Random.nextLong): Double

Perform a permutation test to get a p-value indicating the probability of getting a higher assocation value.

Perform a permutation test to get a p-value indicating the probability of getting a higher assocation value. Take the association level as the null hypothesis, reject if the p-value is less than your desired threshold.

values

Values co-sampled from variables 1 and 2

rounds

Number of permutations to generate

seed

(optional) Seed for the Random number generator used to generate permutations

returns

p-value giving the probability of getting a lower association value

17. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
18. #### def toString(): String

Definition Classes
AnyRef → Any
19. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
20. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
21. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )